
4 Lawrence Livermore National Laboratory

S&TR January/February 2018

5

The Laboratory’s long

history of developing and

supporting open-source

software has led to

thriving user communities

and international

collaborations.

Open-Source SoftwareS&TR January/February 2018

Lawrence Livermore National Laboratory

performance, workload management, and
math and physics codes—across multiple
operating systems and programming
languages. Supported by diverse funding
streams, all directorates participate in
developing valuable software resources.
The Laboratory’s presence—and
reputation—in the open-source community
spans online repositories, conferences,
publications, and social media.

Strength in User Numbers
Releasing software as open source is

a common industry practice. Microsoft
and Google, for example, make portions
of their software widely available, and
all major web browsers and front-end
web development languages are built on
open-source technologies. Scientists who
incorporate OSS into their disciplines have
begun to reference and include source
codes in scientific papers to encourage
reproducibility. The Laboratory’s open-
source strategy has several advantages that
help Livermore keep pace with rapidly
growing technological and market needs.

According to Livermore computer
engineer Ian Lee, the Federal Source
Code Policy acknowledges the value of
OSS both among and beyond national
laboratories. He explains, “Government
agencies and others are trying to solve
the same problems. The open-source
mandate allows agencies and contractors
to align and make the most of external
resources. We can share projects and avoid
redundancies. In particular, the specialized
HPC community benefits from information
sharing. Livermore computer scientist
Todd Gamblin says, “There aren’t many
sites that conduct large-scale HPC work,
and we need to develop common HPC
infrastructure with collaborators rather
than perpetuate siloed efforts.”

Building a community around an
open-source project enables users to

LAWRENCE Livermore develops and
 enhances numerical simulation codes

to support basic science research, advance
next-generation computer science, improve
simulation and modeling capabilities,
and meet the growing demands of high-
performance computing (HPC) systems.
Although some of this software is
classified or controlled, much of the code
developed at Livermore can benefit a
range of users and applications outside
the Laboratory. An increasingly vital form
of technology transfer occurs through the
release of open-source software (OSS),
wherein the source code is made freely
available to the public for inspection,
modification, and enhancement.

For decades, the Laboratory has made
software developed for programmatic work
publicly available as open source. In 2002,
the Department of Energy (DOE) issued
a software release policy recommending
that code produced for its programs be
made open source unless exceptions
could be justified. Several years later, in
2016, the U.S. government established the
Federal Source Code Policy, mandating
that code developed by or for government
institutions be made available to other
federal agencies. The policy further directs
government agencies to provide at least
20 percent of their code to the public as
OSS. In recent years, Laboratory scientists
and engineers have organized unclassified
software repositories on mainstream
open-source hosting services, such as
GitHub, and built active communities
with external collaborators. Today, more
than 350 software packages developed
at Livermore are available to federal,
industry, academic, and other public users.

Livermore’s OSS addresses several
key HPC and non-HPC needs—
compilers, package managers, data
analytics, visualization tools, input/output
benchmarking, data storage, parallel

6 Lawrence Livermore National Laboratory

Open-Source Software S&TR January/February 2018

hosting platforms such as SourceForge;
Bitbucket; or GitHub, today’s most
popular source code hosting service in
the world. To make Livermore OSS more
easily accessible, Lee and colleagues
launched a website (software.llnl.gov) in
2015. He says, “This portal offers a full
corpus of what the Laboratory develops
as open source by providing a centralized
collection of pointers to externally
hosted repositories.”

Laboratory developers create a
repository for each open-source project
predominantly via the Livermore
organization’s main page on GitHub
(github.com/llnl), from which
Livermore’s portal dynamically pulls
the information. In both locations, users
can find software by name or key words.
“Together, these resources facilitate the
management, support, and discovery of
our open-source repositories,” says Lee.

On GitHub, Laboratory developers
publish updates to source code and
associated documentation while interacting
with user communities. These users can
download the software, suggest features

on its predecessor’s success. LS-DYNA
became the leading commercially licensed
product for collision event simulation (see
S&TR, June 2017, pp. 4–11).

For developers, OSS participation
is evidence of professional talent and
productivity. “Just as a scientist can
publish research papers, a developer can
demonstrate his or her work through a
software portfolio,” explains Lee. Kolev
adds, “The Laboratory’s encouragement
of OSS is amazing. Intellectual freedom
is crucial to scientists.” In addition, the
open-source community gives developers
a means of honing skills and provides
an avenue for the Laboratory to evaluate
potential hires through their contributions
to Livermore and other open-source code.

Aiming for Maximum Exposure
Although Livermore has been

producing OSS for many years, until
recently users had no central location
for accessing the Laboratory’s code.
Software repositories were posted
to websites on the llnl.gov domain,
personal websites, and numerous external

provide valuable feedback, which can
result in useful contributions such as new
features and bug fixes. In cybersecurity, for
example, open-source encryption software
is viewed by developers and researchers
as more trustworthy than closed-source
(proprietary or licensed) software because
the former can be scrutinized by the larger
user community. Indeed, Laboratory
scientists often leverage externally
developed software for internal projects
and programs (see the box on p. 10). In
addition, computational mathematician
Tzanio Kolev reasons, “When you know
other people will review your work, you
impose a higher standard for yourself.”
The feedback process improves industry
standards and Livermore’s computing
capabilities. Open-source exposure can
also prompt discovery of new applications
and commercialization potential for
a software program. For instance, the
Laboratory-developed DYNA3D code
used for simulating the mechanical
behavior of collision events was released
as OSS in 1978. A more advanced
commercial code, LS-DYNA, was built

Livermore’s open-

source software (OSS)

is predominantly

released to the public

on the GitHub hosting

platform. GitHub tracks

user actions (top right)

such as the number

of Watchers (followers

who receive change

notifications),

Stars (signifying both

bookmarking and

appreciation), and

Forks (copies created

for independent

development) for each

software project.

7Lawrence Livermore National Laboratory

Open-Source SoftwareS&TR January/February 2018

students, researchers at other national
laboratories, and project collaborators. The
project has adapted to a changing market.
New team members include business
manager Greg Pope, who joined the group
to help scale ROSE’s capabilities.

Quinlan and Pope envision a bright future
for ROSE as software requirements evolve
for home automation and security, medical
devices, financial transactions, power grids,
and antiquated systems in need of coding
revisions. “ROSE can evaluate software
in these applications, and its automation in
upgrading codes can remove some risk by
reducing the probability of human error,”
states Pope. “Our challenge is to meet these
needs without degrading technology—to
balance agility and discipline.”

Finite Elements, Infinite Possibilities
Downloaded from more than

80 countries at a rate of 10 downloads per
day, MFEM has made an impression on

2009, pp. 12–13). Today, as Livermore
and other institutions prepare for the
exascale computing era—faster, more
powerful machines working on diverse
architectures—scientists use ROSE to
evaluate their software’s portability.
“ROSE’s automated transformation helps
ensure codes will keep working when
ported to next-generation systems,”
explains Quinlan.

Livermore initially released ROSE as
OSS so collaborators at Argonne National
Laboratory could use it, and the open-
source approach has benefited the project’s
progress and longevity. “If developers
want their work to be influential, users
must be able to find it, and the barrier to
entry must be low. We’re always striving
to make ROSE easy to use and install
with good documentation,” says Quinlan.
Though most code contributions are made
by Livermore developers, ROSE is widely
used by an external community including

and enhancements, report bugs, leave
comments or questions, and communicate
directly with Livermore developers. The
repositories record each code change
(known as a commit), version history, and
contributor activity. Among Livermore’s
most actively developed and widely used
software repositories are ROSE, MFEM
(Modular Finite Element Methods), ZFS
on Linux, and Spack.

A More Sophisticated Compiler
Software can be analyzed for

debugging, performance tuning, and other
optimization tasks. To conduct these
analyses, developers depend on advanced
software packages called compilers
to translate human-readable code into
machine-friendly binary instructions. Enter
ROSE, Livermore’s homegrown compiler
infrastructure, which remains unique
among compiler solutions after nearly
25 years of development and 14 years as
OSS. Project leader Daniel Quinlan notes,
“Early on, we made the argument to the
Department of Energy that ROSE should
be OSS because the software fulfills
an ongoing need. Software is produced
every year, in a range of languages,
for everything from refrigerators to
pacemakers to cars.”

While most compilers transform
source code into binary code, ROSE
also generates more sophisticated source
code. This source-to-source capability,
combined with support for C++ and its
many versions, gives researchers flexibility
when optimizing simulation codes for
multiple operating systems and hardware
architectures. In 2009, Quinlan’s team won
an R&D 100 Award for this innovative
technology (see S&TR, October/November

Ongoing
development

Bug
fix

Public
release

Feature

Version 0.1 Version 0.2 Version 1.0

New versions of software include a combination of enhancements, optimizations, and bug fixes.

Developers releasing code to the open-source community rely on hosting platforms such as GitHub

to help track and assess internal and external contributions to these new versions. (Image courtesy of

www.atlassian.com. Licensed with CC BY 2.5 AU.)

The ROSE compiler infrastructure

can parse both source code

and binary code. Ancillary tools

developed by the Livermore team

with community support perform

automated analysis, transformation,

and optimization tasks.

ROSE-based tools

Analyses Transformations Optimizations

Front-end
parser Analyzed/

transformed
codeBinary

disassembler

Unparser
Intermediate

representation
(abstract syntax tree)

Binary code

Source code

8 Lawrence Livermore National Laboratory

Open-Source Software S&TR January/February 2018

apply to several CEED objectives, such as
developing high-performance simulations
using high-order methods on quadrilateral,
tetrahedral, and hexahedral grids. Kolev
notes, “MFEM has progressed as an open-
source project. Being chosen for CEED is
a testament to its maturity.” In addition to
MFEM and other associated OSS, CEED’s
public forum, benchmarks, and mini-apps
operate as open-source repositories on
GitHub, where participants can track issues
and communicate easily across all projects.
“Open-source capabilities provide the only
way to manage such a multi-institutional
effort. We share work, offer feedback, and
improve applications in a productive way,”
says Kolev. “The best solutions come from
this approach.”

Designed to Scale
According to computer scientist

Brian Behlendorf, “HPC file systems are
notoriously long-term investments when
developed from scratch. Even a small bug
can result in data loss, which users do not
forgive quickly.” In the early 2000s, Sun
Microsystems, Inc., designed a file system
called ZFS for the Solaris operating system
and released it as OSS. ZFS’s scalable
design and advanced storage features
caught the attention of Behlendorf’s team at
Livermore, which was tasked with scaling
file systems for the Sequoia supercomputer.
However, ZFS did not support Linux
machines, so the team adapted it for this
purpose. The resulting file system was
called ZFS on Linux. “Sun had a five-year

produces accurate results quickly,” states
Kolev, citing as frequent customers the
Livermore teams who develop finite
element codes such as BLAST (see S&TR,
September 2016, pp. 4–11).

Since its debut as OSS, MFEM
has evolved to include adaptive mesh
refinement—a process that continuously
fine-tunes a simulation’s grid points—
and boasts efficient performance on
supercomputers. Beyond Livermore,
collaborators hail from national laboratories,
universities, commercial companies, and
startups. “Releasing MFEM as open source
has enabled us to collaborate with partners
in a more seamless way. We see new
capabilities made possible through their
contributions,” explains Kolev. “When a
code is published to the user community,
developers learn how others use it, making
it easier to improve and uncover the
code’s bugs.”

Kolev leads the Center for Efficient
Exascale Discretizations (CEED), a
co-design center within DOE’s Exascale
Computing Project (ECP). CEED is a
multiyear research partnership that involves
more than 30 computational scientists from

2 DOE laboratories and 5 universities.
MFEM’s foundational algorithms

a specialized field. Project leader Kolev
notes, “The field of scientific software is
small but relatively crowded. MFEM has
become known for high performance and
flexibility.” His team first released MFEM
as OSS in 2010, moving the repository to
GitHub in 2015.

MFEM is a discretization library for
simulation codes, acting as a mathematical
base layer for large-scale physics
applications. Research scientists leverage
MFEM’s high-order finite element meshes,
spaces, and discretization algorithms
as building blocks for simulating and
visualizing physical phenomena. By
breaking down calculations into discrete
components, MFEM saves application
developers time and effort. “MFEM

ZFS on Linux, now OSS, was developed to

create a more cost-effective, less complex, and

higher performance file system for the Sequoia

supercomputer.

9Lawrence Livermore National Laboratory

Open-Source SoftwareS&TR January/February 2018

strength of OSS is that the development cost
is spread out. Developers can create code
much faster, and of better quality, if they are
willing to share their code,” he says.

Recipe for Success
Large-scale scientific applications, such

as mathematical and physics codes, rely on
hundreds of external software programs,
or packages. Installing different package
versions and configurations quickly
becomes laborious—developers frequently
have to rebuild packages because of bug
fixes, operating system upgrades, and
other circumstances. As is the case with
most developers, Gamblin performed this
work manually until he reached his limit
in 2013. “I wanted to solve the problem
rather than repeat it,” he says.

Gamblin created Spack, a Python-
based package manager, to install software
automatically. Spack operates on a range
of HPC platforms because it understands
the complex dependencies among HPC
software packages. Spack makes it easy to
leverage others’ software packages, which
allows application scientists to focus on
science instead of software infrastructure.
“Building software on a supercomputer can
be a painful process,” explains Gamblin.

systems such as Ubuntu and Debian to
include the software in their distributions.

Maintaining high-quality OSS is not
easy. Users’ priorities may conflict with
those of the project, and some contributors
may not consider the amount of work
required to support a software feature long
term. Behlendorf cautions, “Keeping a
higher level view of all needs is essential.
Developers have to think outside of their
own use case so they do not inadvertently
break one feature by adding another.” Still,
the challenges are worth the effort. “One

head start on development and testing. We
were able to take the next step because of
their critical insights with the ZFS design—
and because it was open source,” explains
Behlendorf.

Livermore released ZFS on Linux as
OSS in 2011 and has since built ancillary
tools that facilitate testing, configuration,
and operating system compatibility. The
file system’s capabilities have expanded
to include failover protection, richer
accounting and quota functionality, and
performance improvements that guarantee
data integrity even as computing power
increases. “Everything is more challenging
with large-scale data,” says Behlendorf.
“We anticipated this challenge with
Sequoia and are well situated for next-
generation machines such as Sierra. ZFS
on Linux was designed to scale.” (See
S&TR, March 2017, pp 4–11.)

ZFS on Linux has been a boon for
companies that build data centers,
institutions that store simulation or raw
experimental data, and other national
laboratories. “We receive contributions
from many sources, even the occasional
‘drive-by’ contributor using it on a
home system,” states Behlendorf. The
community’s enthusiastic response has
also improved Livermore’s ongoing
development. He continues, “We’ve
benefited tremendously from testing by
our broad range of users. They often
stress the software in unique ways, which
can help uncover bugs.” ZFS on Linux’s
high quality and powerful features have
prompted mainstream Linux operating

The logo for the MFEM project illustrates the

high-order mesh elements and physics field

representations it applies to high-performance

computer simulations. This image was created

with GLVis, another Livermore-developed OSS

that uses MFEM to generate accurate finite-

element visualizations.

ARES, one of the Laboratory’s proprietary

hydrodynamics codes, has dozens of dependencies

requiring a variety of package types. Spack enables

multiple versions to be built nightly across different

environments, reducing the code’s deployment time

on new machines from weeks to days.

Open-Source Software S&TR January/February 2018

Livermore computer scientist Todd Gamblin

delivers Spack tutorials, talks, and presentations

at supercomputing conferences and other face-

to-face meetings. Participating in industry events

allows Laboratory scientists to connect and

engage with the open-source community. (Photo

by Meg Epperly.)

With Spack, a research team can build
many different versions of their code and
test new configurations before deployment
to a production environment.

Gamblin’s team released Spack as OSS
in 2014. Each new package added to the
code base makes Spack more flexible for
users working with diverse platforms,
programming languages, simulation
frameworks, and other variables. Saving
time and effort improves reproducibility
and performance. “Spack is a repository

of recipes for building HPC software.
It lets users leverage a larger software
ecosystem because they are not spending
their time rediscovering how to build every
package,” says Gamblin.

Spack’s 2016 average of 100 downloads
per day ballooned to 400 downloads per
day in 2017. Every week, the GitHub
repository logs 7,000 views while the team
assesses hundreds of contributions. They

 External Software Enhances Internal Programs
Lawrence Livermore scientists are often contributors to and customers of externally

developed open-source software (OSS), including frameworks such as Python and Drupal,
which underpin programmatic work. Computer engineer Ian Lee notes, “We can lead the
charge in user communities where a national laboratory may not normally have a seat at the
table but where our needs must be discussed.”

At the Laboratory’s National Atmospheric Release Advisory Center (NARAC), a
Livermore software development team is using open-source technologies to modernize
NARAC’s Linux-based central system. NARAC operations depend on a fast, reliable
computer modeling system to provide real-time assessment of emergency response
strategies for airborne releases of hazardous materials (see S&TR, January/February 2012,
pp. 12–18). Led by information technology and software manager John Fisher, the
multiphase modernization effort includes rebuilding the central system’s graphical user
interface (GUI) framework with a scalable OSS suite. “We are implementing software for
the long term, so we have chosen OSS with broad community support,” says Fisher.

The central system consists of 50 data sources, 28 servers, 8 storage units, and more
than 3 million lines of code. Fisher’s team explored OSS that could simplify this large,
complex architecture and selected the popular Angular platform developed by Google.
According to software developer Sei Jung Kim, the decision to use Angular informed
subsequent decisions. “Angular recently underwent a major redesign. We pursued solutions
for the visual layer that were compatible with the platform,” she says. For instance, the
team turned to the PrimeNG user interface toolkit to provide a consistent, attractive, and
powerful user experience.

One challenge of combining open-source tools is determining which versions to use.
For example, Kim states, “Every time we update PrimeNG to the latest version, we must
ensure other dependencies, such as Angular, are in sync.” In addition, the team must work
through compatibility issues among open-source solutions. “When you use multiple tools,
they don’t always like each other,” notes Fisher. Every OSS integrated into the system
undergoes a detailed evaluation by NARAC developers.

NARAC’s new technology stack is designed to streamline development while
delivering a better user experience and avoiding software obsolescence. Fisher remarks,
“The maturity of our current system allows us to more easily identify the capabilities
we need. Finding well-supported, well-documented solutions for niche requirements is
work, but not using open-source tools makes development and maintenance more difficult
and expensive in the long run.” Already the team is seeing usability improvements
with several desktop applications developed from OSS. For example, an observed
meteorological database GUI allows NARAC users to browse real-time global weather
data such as temperature, humidity, wind speed, and air pressure. Around 10 gigabytes of
data accumulate per day, but the user only wants information related to a specific event
under analysis. “The GUI can bring up a selected portion of data based on user input,”
explains Kim.

As the central system modernization project progresses, Fisher remains confident in the
team’s approach to reducing dependency on proprietary software. “The Laboratory’s work
demands sophisticated technology solutions,” he says. “With open-source tools, we are
upgrading existing functionalities and adding new capabilities with better usability.”

Lawrence Livermore National Laboratory10

11Lawrence Livermore National Laboratory

Open-Source SoftwareS&TR January/February 2018

Livermore’s OSS portal tracks software release trends in dynamic graphs developed by computer

scientist Laura Weber. (top left) More than half of Livermore developers contribute to externally

developed OSS. (top right) Three-fourths of Livermore open-source projects receive external

contributions. (bottom) The first Laboratory-developed open-source repositories were created years

before Git (2005) and GitHub (2008) emerged as community-based solutions.

Added to GitHub
First commit

19
96

20
00

20
04

Year

20
08

20
12

20
18

350

250

150

50

R
ep

os
ito

rie
s

52% Contributing externally
48% No external repositories

383
Livermore

repositories

171
Livermore
members

75% External contributors
25% Only Livermore contributors

19
98

20
02

20
06

20
10

20
14

20
16

events is open source, the audience can
access and examine it right away, which
helps convince them that it’s worth
their time to investigate further,” states
Kolev. Lee presented at the 2016 GitHub
Universe Conference. Gamblin gives
Spack tutorials and presentations at
supercomputing conferences, and
Behlendorf is a fixture at OpenZFS
events. Lee and Gamblin also run Twitter
accounts (@LLNL_OpenSource and
@spackpm) to publicize the Laboratory’s
OSS news and communicate with those
interested in Spack and other projects.

Livermore’s software development
workforce embodies this collaborative
spirit, and Lee strongly encourages
sharing code as the default in cases
where classification and sensitivity are
not issues. “Embracing an open-source
strategy means we can make code
developed by one available to all. Sharing

have adapted to this growth with cloud-
based testing services and continuous
integration, a process that merges multiple
copies of code to detect any build issues.
“One challenge is maintaining stability
while updating features incrementally.
However, Spack wouldn’t be as stable as
it is if users didn’t find problems with it,”
notes Gamblin.

Although Spack can run on personal
computers or relatively small clusters,
significant contributions come from
users at other HPC centers. Livermore’s
relationship with the community is a
win–win. Gamblin explains, “External
users have contributed most of Spack’s
more than 2,400 packages, which
Livermore could not have developed
alone.” This success has led others to
take notice, especially for efforts such as
DOE’s ECP, which has adopted Spack
to manage software releases for DOE’s
entire exascale software stack. “Package
managers are the glue that hold software
ecosystems together because they allow
developers to use each others’ software
with a push of a button,” says Gamblin.
“We are optimistic that Spack will be
that glue for ECP and enable a thriving
exascale software ecosystem.”

Paying It Forward

Livermore’s OSS portfolio has grown
thanks to an encouraging culture at the
Laboratory. For instance, the site-wide
Developer Day session gives employees
across the Laboratory a chance to learn
about each other’s projects, including
OSS efforts. At Livermore’s seasonal
“hackathons,” developers try out OSS
with existing work or new projects under
consideration (see S&TR, June 2013,
pp. 16–18). This commitment, in turn,
has increased Livermore’s presence and
leadership in the open-source community.

Beyond online interaction, Laboratory
scientists actively connect with the open-
source community by attending industry
events and presenting at conferences.
“When the software we describe at these

information with others working in the
same technology stack and receiving their
constructive feedback is quite valuable,”
he advises. “Without this feedback along
the way, more rework would be needed
later. Code does not have to be perfect to
be useful.”

 —Holly Auten

Key Words: Center for Efficient Exascale
Discretizations (CEED), compiler, data
storage, discretization, Exascale Computing
Project (ECP), Federal Source Code Policy,
file system, GitHub, high-performance
computing (HPC), MFEM (Modular Finite
Element Methods), National Atmospheric
Release Advisory Center (NARAC), open-
source software (OSS), package manager,
portal, repository, ROSE, source code, Spack,
ZFS on Linux.

For more information contact Ian Lee

(925) 423-4941 (lee1001@llnl.gov).

